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Abstract

An approximate mathematical model of contact melting of an unfixed material in elastic cylindrical and spherical

capsules is developed. Since the density of the solid is higher than that of the melt, the melting solid resides at the

bottom supported by a thin layer of the generated, convecting, melt, and the capsule swells. The main characteristic

scales and non-dimensional parameters, which describe the principal features of the melting process and the liquid flow,

are found. Linearisation with regard to the Stefan number as well as the small difference between the densities of the

solid and liquid enables us to derive a closed-form evolution equation for the motion of the solid, which also determines

the melting rate. Numerical solution of the evolution equation shows that the swelling of the capsule during melting,

which is caused by the decrease of the density during phase transition, leads to slowing down of the melting process.

This effect is due to flattening of the lower surface of the capsule, which entails fall of the pressure along with thickening

of the molten layer. The latter determines the decrease of the melting rate. � 2002 Published by Elsevier Science Ltd.

1. Introduction

Analysis of close-contact melting of a solid in a cavity

is motivated by application in latent heat-of-fusion

thermal-storage systems. Contact melting in a circular

horizontal cylinder has been studied numerically by

Saitoh and Hirose [1] and Nicholas and Bayazitoglu [2],

where the energy equation was solved in a thin molten

layer, which determined the sinking velocity of the solid

core. Analytical solution was found by Bareiss and Beer

[3], who showed its good agreement with experimental

results for small Stefan numbers. Contact melting in

a spherical capsule was investigated numerically by

Moore and Bayazitoglu [4] and later, applying the tech-

nique proposed in [3], Bahrami and Wang [5], Roy and

Sengupta [6] as well as Fomin and Saitoh [7] reported

analytical solutions. Fomin et al. [8] studied the effect of

the shape factor of elongated capsules on the melting

rate. The general scheme for the scale analysis of the

contact melting problem was proposed by Bejan [9].

Although the aforementioned investigations highlight

the main characteristics of contact melting inside a

capsule, the effect of the difference between the densities

of the solid and liquid phase, which leads to swelling of

the capsule, has not been yet analysed. In the present

paper the approximate approach developed by Bareiss

and Beer [3] is applied with the higher order of accuracy

with regard to non-linear temperature distribution in the

melt, accounting for the convective heat transfer, for the

mathematical modelling of contact melting in elastic

horizontal circular cylinder and sphere. The main ob-

jective of the work is to derive a closed-form evolution

equation for the solid motion and estimate the effect of

the capsule swelling on the melting rate.

2. System model and analysis

Melting process within a circular capsule is illustrated

in Fig. 1. The equation ðx�=aÞ2 þ ðy�=aÞ2 ¼ 1 describes
the generating curve of the internal surface of the cap-

sule which can be a horizontal circular cylinder or a

sphere completely filled with solid phase. In the first case

ðx�; y�Þ are Cartesian coordinates, and in the second case
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ðx�; y�Þ are cylindrical coordinates, where x� is the radial
distance and y� is the axis of symmetry. The capsule’s
shell generally has finite thickness and is linearly elastic.

Initially, the circular capsule contains material in solid

phase, which occupies the full space of the capsule. Then

the wall temperature is raised to the value T �
w > T �

m and is

held at this value during the period necessary to melt the

solid completely. The unfixed solid bulk sinks 1 because

its density is higher than that of the molten liquid. The

melting of the solid and its downward motion is char-

acterised by the time-dependent shift s� of a material-

Nomenclature

a, aext the internal and external radii of the sphere

or circular cylinder containing only the solid

phase

b the internal radius of the swelled sphere or

circular cylinder containing the solid and

liquid phases

cs, cl specific heat of the solid and liquid, respec-

tively

e� the radial displacement of the capsule’s shell

E Young’s modulus of the capsule’s shell

g gravitational acceleration

h the non-dimensional molten layer thickness

H the normalised thickness of the capsule’s

shell, ¼ ðaext � aÞ=a
h projection of the thickness h on the vertical,

y-direction

ks, kl the solid and liquid heat conductivities

l the tangential coordinate, ¼ l�=a, as shown
in Fig. 1

Lm the melting latent heat

n the transverse coordinate, ¼ n�=h�, as shown
in Fig. 1

p the liquid pressure

p the excess liquid pressure, ¼ ðp� � qlgða�
y�Þ � p�minÞ=p0

p�min is the minimum pressure in the capsule

r� the radial coordinate in spherical or cylin-

drical coordinate system

s the shift of the reference point fixed in the

solid core with regard to the bottom of the

capsule (Fig. 1), ¼ s�=2a
_ss melting rate, ¼ ds=ds
Ste Stefan number, ¼ clðTw0 � T �

mÞ=Lm
T the non-dimensional liquid temperature

T �
m the dimensional melting temperature

Tw the non-dimensional wall temperature

Tw0 the characteristic wall temperature

u, w dimensionless tangential and transverse ve-

locities

V � the volume of the solid (taken per unit width

in the case of cylinder)

Vm dimensionless normalised volume of the so-

lid, ¼ V �=ð2pmamþ2Þ

x the dimensionless horizontal coordinate,

¼ x�=a
y the dimensionless vertical coordinate,

¼ y�=a

Greek symbols

e the ratio of the molten layer thickness scale

to the capsule radius, ¼ h0=a
��ij the strain tensor in the capsule’s shell

d the relative elongation of the capsule radius,

¼ ðb� aÞ=a
dij the unit tensor

dmax the maximal elongation of the capsule ra-

dius (attained when the capsule contains

only liquid), ¼ ðqs=qlÞ
1=ðmþ2Þ � 1

dq the relative difference between the solid and

liquid densities, ¼ ðqs � qlÞ=ql
l the liquid viscosity

m ¼ 0; 1 parameter determining if a circular cylinder

or a sphere is considered

u is the angular coordinate in spherical or

cylindrical coordinate system

qs, ql the constant densities of the solid and liquid

r the Poisson’s ratio

r�
ij the stress tensor acting in the capsule’s shell

r�
t the tensile strength of the capsule’s shell

h ¼ ðn; yÞ the angle between the vertical axis and the

internal normal to the capsule wall, as

shown in Fig. 1;

s the non-dimensional time

sm the time required to complete melting of the

solid core

Superscript

* dimensional quantity

Subscripts

l liquid

m melting

s solid

w wall of the capsule

0 scales

e marginal point of the molten layer

1 We do not treat ice.
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fixed reference point, which is chosen to be the centre of

the core, about the bottom of the capsule (Fig. 1). In

case of a rigid capsule, s� describes the vertical shift of
the solid core. The motion of the solid bulk is accom-

panied by the generation of liquid at the melting surface.

This liquid is squeezed up to the space above the solid

through a narrow gap between the melting surface and

the wall of the capsule. At the same time, because the

density of the liquid is smaller than that of the solid, the

capsule swells.

Conventionally, the solid–liquid interface can be di-

vided into two parts by the time-dependent value le of
the tangential coordinate (Fig. 1): the bottom interface

ðl < leÞ, which represents the close-contact melting area,
where most of the intensive melting occurs, and the

upper interface, where much slower ‘‘latent’’ melting

takes place. Experiments on melting in a circular hori-

zontal tube conducted by Bareiss and Beer [3] showed

that the thickness of the molten layer in the close-con-

tact area is considerably smaller than the characteristic

size of the cavity, and the melting at the upper surface of

the solid is negligible because its typical amount relates

to the melt generated by close-contact melting as the

ratio of the typical molten layer thickness to the capsule

radius h0=a � 1. Moreover, in these experiments the

upper surface of the solid core was very insignificantly

changing its shape with time and, therefore, in the model

the shape of this surface could be considered as ap-

proximately the same throughout the entire process.

Apart from the mentioned simplifications, we will

restrict ourselves by considering the case when the liquid

density is constant, and, as a particular case, we will

assume the difference between the solid and liquid den-

sities to be small. Furthermore, the capsule cross-section

will be considered to be circular at any time of the

process, which is the case when, during the melting, the

mean liquid pressure inside the capsule is much higher

than its vertical change due to the gravity force.

On the basis of all the said above, the primary as-

sumptions made in the present study are the following:

(1) Melting at the upper surface of the solid core is neg-

ligibly small.

(2) The solid core is at the melting point.

(3) Thermophysical properties of the materials are con-

stant.

(4) The pressure at the upper interface between the solid

and liquid is hydrostatic.

(5) Since the thickness of the liquid layer in the close-

contact area is very small in comparison with the di-

mensions of the capsule, lubrication approximation

can be implemented for mathematical modelling of

the heat and mass transfer processes in the molten

layer. Therefore, the local two-dimensional curvilin-

ear orthogonal coordinate system ðl; nÞ, which is of-
ten used in boundary layer problems, is applied as

shown in Fig. 1.

(6) The motion of the liquid and the solid is slow, and,

therefore, non-inertial.

(7) The cross-section of the capsule is always circular.

2.1. Governing equations

The curvilinear coordinate system ðl�; n�Þ is chosen in
such a way that, after normalisation, the transverse co-

ordinate n ¼ 0 determines the capsule wall and n ¼ 1
determines the solid–liquid interface [10,11]. For the

case under consideration we choose the scales for the

longitudinal and transverse coordinates, temperature,

excess pressure and longitudinal velocity as

s0 ¼ 2a; l0 ¼ a; n0 ¼ h0; T0 ¼ Tw0 � T �
m;

p0 ¼ agðqs � qlÞ; u0 ¼ aw0=h0:

Here, Tw0 is a characteristic temperature of the wall of
the capsule. The characteristic excess pressure p0 is taken
as the typical difference between the gravitational and

buoyancy forces acting on the solid per unit area of its

surface, which must be balanced by the pressure rise

over its hydrostatic value in order to keep the solid

floating. The other scales will be determined from in-

vestigation of the governing equations. Henceforth, we

will assume the non-dimensional melting temperature to

be zero, Tm ¼ 0.

2.1.1. Dynamics of the liquid

On the basis of assumption (5), the conservation

equations of mass, momentum and energy in dimen-

sionless form can be written as

Fig. 1. The cross-section of an elastic capsule of circular cross-

section containing a melting unfixed solid.
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oðxmhuÞ
ol
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op
ol
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o2u
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op
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on2
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where m ¼ 0 corresponds to the circular cylinder and
m ¼ 1 corresponds to the sphere. These are essentially
the lubrication equations with an accuracy OðeÞ ex-
pressed in curvilinear coordinates. Here the terms of

OðeÞ are neglected since the parameter e ¼ h0=a, which
represents the ratio of the gap-width scale to the char-

acteristic dimension of the capsule, is very small and

varies in the range 10�3–10�2 for different phase-change

materials used in thermal-storage systems. Eq. (1) is the

mass balance, (2) and (3) express the longitudinal and

normal force balance, and (4) is the steady-state energy

balance. To order OðeÞ, the Stefan condition at the
solid–liquid interface, n ¼ 1, yields

w ¼ u
h
oT
on

� �
n¼1

; u ¼ klðTw0 � T �
mÞ

h0qlLmw0
: ð5Þ

To the same order of accuracy, the transverse velocity at

the solid–liquid interface n ¼ 1 can also be found as

w ¼ �r_ss cos h; r ¼ 2qsa
qlw0s0

: ð6Þ

From (3) it can be seen that p is a function of only one

independent variable l. Equating g ¼ 1 in (2), u ¼ 1 in
the Stefan condition (5) and r ¼ 1 in (6) yields the scales
for the molten layer thickness, transverse velocity and

time as follows

h40 ¼
aðTw0 � TmÞlkl
Lmqlgðqs � qlÞ

; w0 ¼
klðTw0 � T �

mÞ
qlh0Lm

; s0 ¼
2aqs
w0ql

:

ð7Þ

Because the typical time scale for the solid is qscsa
2=ks,

assumption (2) requires

qscsa
ks

� 2qs
w0ql

; ð8Þ

while assumptions (1) and (5) are adequate when e ¼
h0=a � 1.

Integrating the momentum equation (2) twice with

respect to n and taking into account the no-slip condi-

tions on both the capsule wall and melting interface, we

can find the expression for the longitudinal velocity

u ¼ h2

2

op
ol

ðn2 � nÞ: ð9Þ

Substituting the expression for the longitudinal ve-

locity (9) into the continuity equation (1), integrating

with respect to n and l, and taking into account the

boundary condition (6) and the impermeability condi-

tion on the wall of the capsule, we derive the expressions

for the pressure gradient and the transverse velocity

op
ol

¼ � 12x_ss
ðm þ 1Þh3 ; ð10Þ

w ¼ _ss cos hð2n3 � 3n2Þ: ð11Þ

2.1.2. Dynamics of the solid

Balancing the forces acting on the solid in the vertical

direction, namely the gravitational force and the force

exerted by the liquid, yields with an accuracy of OðeÞ
Z xe

0

pxm dx ¼ VmðsÞ; m ¼ 1; 0; ð12Þ

where the normalised solid volumes for the cylinder,

V0 ¼ V �=ð2a2Þ, and sphere, V1 ¼ V �=ð2pa3Þ, are given
respectively as

2V0 ¼ arcsin xe þ xe
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2e

q
þ b2

a2
arcsin

axe
b

þ b
a
xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2x2e

b2

r
� 2ð2sþ dÞxe; ð13Þ

3V1 ¼ 1� ð1� x2eÞ
3=2 � 3

2
x2eð2sþ dÞ � b2

a2

�
� x2

�3=2
þ b3

a3
;

ð14Þ

and the marginal points are given by

ye ¼
1� b2=a2

2ð2sþ dÞ � s� d
2
; xe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

a2
� y2e

r
:

The magnitude of the gravitational force at the right-

hand side of Eq. (12) depends on the solid bulk volume

which varies with time since s is a function of time. As it

can be seen from Eqs. (13) and (14), at the final stage of

the melting process, when s tends to 1, the volume of the

solid bulk and, therefore, the magnitude of the gravita-

tional force vanish to zero. At the left-hand side of Eq.

(12), the force acting in the direction opposite to the

gravitational force is represented by the force of pressure

in the liquid layer. The other component of this force

caused by the shear stresses is ignored since its magni-

tude is of order OðeÞ.
Using the expression for the pressure gradient (10)

we can rewrite the force balance equation (12) in the

form

12_ss

ðm þ 1Þ2
Z xe

0

xmþ2

h3 cos h
dx ¼ Vm; m ¼ 0; 1: ð15Þ
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In case of a small expansion of the capsule d caused
by a small difference between the solid and liquid den-

sities, to order of Oðd2Þ we can write
Vm ¼ Fm þ dGm; ð16Þ

where

F0 ¼ arccos s� s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
; G0 ¼ arccos s�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
;

ð17Þ

F1 ¼
2

3
� sþ s3

3
; G1 ¼

1

2
� sþ s2

2
; ð18Þ

and

xe ¼ xe0 þ dxe1; ð19Þ

where

xe0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
; xe1 ¼

1� s

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p : ð20Þ

2.1.3. Dynamics of the capsule form

Because the liquid density is constant, in order to find

the measure of the expansion of the capsule, d, we can
consider the balance of mass, which can be written for

the circular cylinder and the sphere as

pdq

2
¼ V0dq þ

p
2

b2

a2

�
� 1

�
; m ¼ 0; ð21Þ

2dq

3
¼ V1dq þ

2

3

b3

a3

�
� 1

�
; m ¼ 1; ð22Þ

where dq ¼ ðqs � qlÞ=ql. When values of d are not small,
then the above equations for the mass balance, together

with expressions (13) and (14) for Vm, constitute a non-

linear system of algebraic equations for determination

of the functions VmðsÞ and dðsÞ ¼ b=a� 1, which, how-
ever, are difficult to solve analytically in general case.

For small values of d, we can use linearisation with re-
gard to d. In this case, to order Oðd2Þ the mass balance
yields

d ¼ dq
1

2

�
� V0

p

�
; m ¼ 0; ð23Þ

d ¼ dq
1

3

�
� V1
2

�
; m ¼ 1: ð24Þ

Taking into account (16), we derive the expressions for

the relative elongation of the capsule radius

d ¼ dq
1

2

�
� F0

p

�
þOðd2qÞ; m ¼ 0; ð25Þ

d ¼ dq
1

3

�
� F1
2

�
þOðd2qÞ; m ¼ 1: ð26Þ

2.2. Simplified model of close-contact melting

As it was already mentioned, the derivation of the

mathematical model presented above is based on the

fact that the parameter e ¼ h0=a 	 10�3–10�2, therefore
values of order OðeÞ are ignored. This model is governed
by another small parameter––the Stefan number. For a

number of situations and a variety of phase-change

materials Ste < 0:5. The latter allows us to implement
the perturbation methods and to neglect in the further

analysis the terms of the order of OðSte2Þ. Within the
bounds of the adopted accuracy, the temperature pro-

file, which should be substituted into the left-hand side

of Eq. (4), can be taken as follows

T ¼ Twð1� nÞ þOðSteÞ: ð27Þ

From the Stefan condition (5) and Eq. (27), it also fol-

lows that

Tw ¼ h_ss cos h þOðSteÞ: ð28Þ

Due to Eq. (28), we can express the molten layer

thickness at leading order as h ¼ Tw=ð_ss cos hÞ þOðSteÞ.
Taking this into account, and using the linear approxi-

mation for the temperature (27) with the expression for

the velocities (9) and (11) in the convective parts of the

energy balance (4), we can rewrite the last as

� Steh_ss cos h
6x

ðm þ 1Þ cos h
oTw
ol

ðn2
�

� nÞð1� nÞ

þ ð2n3 � 3n2ÞTw
�
¼ o2T

on2
þOðSte2Þ: ð29Þ

After integration of this equation twice, from n to 1 and

from 0 to n, and taking into account the boundary

conditions at the melting interface (5) and (6) and the

wall, we derive the temperature distribution

T ¼ Tw þ Steh_ss cos h
6x

ðm þ 1Þ cos h
oTw
ol

n5

20

��
� n4

6

þ n3

6
� n
12

�
þ n4

4

�
� n5

10
� n
2

�
Tw

�
� nh_ss cos h

þOðSte2Þ: ð30Þ

Equating the temperature at the melting surface, n ¼ 1,
to zero, we can find the molten layer thickness to order

of OðSte2Þ

h ¼ Tw
_ss cos h

1

�
� Ste

x
5ðm þ 1Þ cos h

oTw
ol

�
þ 7

20
Tw

��
:

ð31Þ

If the temperature distribution on the wall of the

capsule, TwðlÞ, is given, then (31) and the force balance
equation (15) constitute an integro-differential system,

from which the shift of the solid core, s ¼ sðsÞ, and the
thickness of the molten layer, h ¼ hðl; sÞ, can be deter-
mined. For an arbitrary Tw, this system of equations can

A.V. Wilchinsky et al. / International Journal of Heat and Mass Transfer 45 (2002) 4097–4106 4101



be solved numerically, however, the closed-form ana-

lytical solution can be readily obtained, provided that

the temperature on wall is constant at a fixed time,

oTw=ol 
 0. In this case, the product h ¼ h cos h does not
depend on x and can be a function of the time only,

given by the expression

h_ss ¼ Twð1� 7SteTw=20Þ: ð32Þ

As a result, the force balance equation (15) reduces to

�hh3 ¼ 12_ssCm

ðm þ 1Þ2Vm

; ð33Þ

where

Cm ¼
Z xe

0

xmþ2 cos2 hdx ¼ xmþ3
e

m þ 3�
a2xmþ5

e

b2ðm þ 5Þ : ð34Þ

To order of Oðd2Þ we can write
Cm ¼ Um þ dWm; ð35Þ

where

Um ¼
xmþ3
e0

m þ 3�
xmþ5
e0

m þ 5 ; Wm ¼ xe1xmþ2
e0 ð1� x2e0Þ þ

2xmþ5
e0

m þ 5 :

ð36Þ

Now, the pressure distribution can be found from

(10) as

p ¼ 3_ss
ðm þ 1Þ�hh3

2x2e

�
� a2

b2
x4e � 2x2 þ

a2

b2
x4
�
; ð37Þ

which, to order of Oðd2Þ, yields

p ¼ 3_ss
ðm þ 1Þ�hh3

1
	

� s4 � 2x2 þ x4 þ 2d 1



� s2 � s3

þ s4 � x4
��
; ð38Þ

where, at leading order, d is given by (25) and (26).
Substituting expression for the molten layer thickness

(32) into the force balance equation (33) leads to the

evolution equation for the melted part of the solid, s,

_ss ¼ ½ðm þ 1Þ2VmT 3wð1� 7SteTw=20Þ
3
=ð12CmÞ�1=4; ð39Þ

which is an ordinary first-order differential equation,

and, in general case, Vm and Cm are given implicitly by

(13), (14), (21), (22), (34).

If the wall temperature is constant not only along the

capsule wall, but also with regard to time, then we can

eliminate the factor at the right-hand side of (39) de-

pending on Tw and Ste by rescaling the time s

~ss ¼ s½ðm þ 1Þ2T 3wð1� 7SteTw=20Þ
3
=12�1=4: ð40Þ

After this, due to (25) and (26), to order Oðd2qÞ, we derive

ds=d~ss ¼ Fm

Um

� �1=4
1

�
þ dq

Xm

4

Gm

Fm

�
� Wm

Um

��
; ð41Þ

where

X0 ¼
1

2
� F0

p
; X1 ¼

1

3
� F1
2
: ð42Þ

Because, generally ds=d~ss depends only on dq, even if

it is not small, the knowledge of the function sð~ssÞ when
dq is fixed, which can be also found from experiments for

a certain value of the capsule radius and material, en-

ables us to find solution of the problem for all quantities

of the capsule radius, wall temperature and material

properties with the same value of dq.

Let us now find how the time of complete melting of

a certain material changes if the initial radius of the

capsule and wall temperature change. Because ds=d~ss
does not change in this case, we derive

s�m2 ¼
a2
a1

� �5=4 Tw1ð1� 7SteTw1=20Þ
Tw2ð1� 7SteTw2=20Þ

� �3=4
s�m1; ð43Þ

where the indices point at different values of the capsule

radius and wall temperature. If the wall temperature is

the same, then the time of complete melting increases as

power 5/4 of the radius ratio.

Since the left-hand side of Eq. (4) is a value of OðSteÞ
and the parameter Ste is small, the heat transport be-

tween the solid and the capsule wall is dominated by

conduction in the transverse direction. Nevertheless, it is

advantageous to introduce the Nusselt number, in order

to describe the effect of the heat convection in the mol-

ten layer for a constant wall temperature. The Nusselt

numbers at the wall of the capsule, Nuw, and at the
melting interface, Num can be defined as

Nuw ¼ 1

T jn¼1 � Tw

oT
on






n¼0

;

Num ¼ 1

T jn¼1 � Tw

oT
on






n¼1

:

ð44Þ

Taking into account the temperature distribution (30)

and neglecting the terms of order Ste2, we derive

Nuw ¼ 1þ 3

20
SteTw; Num ¼ 1� 7

20
SteTw: ð45Þ

For Ste ¼ 0:1, we have corrections of 1.5% and 3.5%

respectively, which means that in this case the heat flux

at the wall can be satisfactorily approximated by the

linear interpolation of the temperature distribution. For

larger values of the Stefan number, however, the linear

approximation will be too rough, and the corrections are

necessary to include.

2.3. Stresses acting on the capsule’s shell

Let us now find stresses acting on the capsule’s shell.

This will enable us to find conditions guaranteeing sat-

isfaction of assumption (7) and absence of ruptures of

the capsule.
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We consider a linear elastic rheology of the capsule’s

shell [12]

r�
ij ¼

E
1þ r

��ij

�
þ r
1� 2r ��kkdij

�
: ð46Þ

Let us denote R ¼ aext=a, where a, aext the internal and
external radii of the undeformed capsule. Evidently,

assumption (7) requires pmin � qsga during the melting,
namely when d=dmax ’ 1, where dmax ¼ ðqs=qlÞ

1=ðmþ2Þ � 1
is the maximal elongation of the capsule radius, achieved

when the capsule contains only the liquid phase. At the

same time, at the beginning of the melting, when d=
dmax � 1, volume of the melt is so small that the

deformation of the capsule’s shell is negligible.

The radial displacement e� of a uniform deformation
of a circular cylinder and spherical capsule depends only

on the radius r� [12]

e� ¼ ar� þ b
r�mþ1

: ð47Þ

The constants a, b are determined from the conditions

that at the internal surface of the capsule’s shell, r� ¼ a,
the displacement is equal to b� a, and the radial stress
r�
rr is equal to zero at the external surface of the capsule.

This yields

a ¼ 2mð1� 2rÞ
ð1þ rÞmamþ2

ext

b;

b ¼
ð1þ rÞmRmþ2 b

a � 1
� �

2mð1� 2rÞ þ ð1þ rÞmRmþ2 :

ð48Þ

For the strains in cylindrical (m ¼ 0) and spherical

(m ¼ 1) coordinates respectively we have

��rr ¼ a � 2mb
r�mþ2

; ��uu ¼ a þ b
r�mþ2

; ð49Þ

which yields for the stresses

r�
rr ¼

2mE

ð1þ rÞ1�m

Rmþ2d
2mð1� 2rÞ þ ð1þ rÞmRmþ2

� 1

�
� aext

r�

� �mþ2
�
; ð50Þ

r�
uu ¼ E

ð1þ rÞ1�m

d
2mð1� 2rÞ þ ð1þ rÞmRmþ2

� 2m

�
þ aext

r�

� �mþ2
�
: ð51Þ

The stresses have maximum values at the internal sur-

face.

Because p�min ¼ �r�
rrjr�¼a, assumption (7), neglecting

the influence of the pressure change inside the capsule on

the capsule form, requires in terms of scales

Edmax Rmþ2�
� 1

�
� qsga; ð52Þ

while the condition of intactness of the capsule yields

exactly

E

ð1þ rÞ1�m

dmax 2m þ Rmþ2ð Þ
2mð1� 2rÞ þ ð1þ rÞmRmþ2 < r�

t : ð53Þ

In case of small thickness of the capsule’s shell,

namely when aext ¼ að1þ HÞ;H � 1, the above formu-

las yield at leading order

EdmaxH � qsga;
Edmax

ð1þ rÞ1�mð1� rÞ
< r�

t ; ð54Þ

with dmax ¼ ðqs=qlÞ
1=ðmþ2Þ � 1. Assuming the Poisson’s

ratio to be between 0.3 and 0.5, these estimates also give

the restriction on the relative capsule thickness

H � qsga=r
�
t : ð55Þ

Therefore, the capsule’s wall can be thin only when both

Young’s modulus and tensile stress are sufficiently large,

otherwise either the capsule form will be not spherical

due to the non-uniform pressure distribution or the

capsule’s shell will be ruptured.

3. Results and discussion

Among the different phase-change materials used in

the thermal energy storage systems, paraffin is most

frequently used. Numerical computations, provided

below, were performed for Ste ¼ 0:1, and Tw ¼ 1. Results
for other values of Ste can be derived by rescaling of the

variables. While paraffin is characterised by dq ¼ 0:185,
in order to accentuate differences in the melting regime

caused by the swelling of the capsule, we will use the

value dq ¼ 0:3 as a possible maximum. Solutions of the
problem with other values of this parameter can be de-

rived by linear interpolation because of the linearity of

the model with regard to dq.

In order to present results of calculations for the

cylinder and sphere in a unified time-coordinate, we will

use the time variable �ss ¼ ~ss=
ffiffiffiffiffiffiffiffiffiffiffi
m þ 1

p
, whose scaling does

not depend if the cylinder or the sphere is considered.

Evidently, since for a cylinder and a sphere the volume

of the capsule relates to its surface as 1=2a and 1=3a,
respectively, the melting rate of the cylinder is lower

than that of the sphere, as was also confirmed by com-

putations.

The melting rate ds=d�ss is shown in Fig. 2, from which
it can be seen that the melting rate decreases during the

melting. At the beginning of the melting, the melting

rates for the swelling and non-swelling capsules are the

same. Then the melting rate for the swelling capsule

decreases in comparison with that of the non-swelling

one, and their difference D_ss, shown in Fig. 3, reaches its
maximum near the middle of the melting process. At the

end, however, the difference between the melting rates
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decreases. Such a behaviour is caused by the change of

the melting-surface geometry during the melting because

of the following.

The solid is supported by the pressure acting on its

lower surface. As the pressure distribution along the

capsule wall shows (Fig. 4), the region of the largest

acting pressure, supporting the most of the solid, is

there, where the melting surface is close to horizontal,

because the stress acting on the solid is directed there

almost vertically to counteract the gravity force. Sup-

porting the solid at higher slopes of the contact surface

would require much higher pressure there, which would

lead to a negative pressure gradient along the wall,

hampering the melt outflow. Then, the smaller the flat

horizontal area is, the larger will be the pressure neces-

sary to support the solid, and, hence, the smaller will be

the molten layer thickness, which yields the higher

melting rate. Furthermore, because the solid mass de-

creases during the melting, the pressure also decreases

(Fig. 5), which leads to increasing of the molten layer

thickness accompanied by the decrease of the melting

rate of both capsules during the melting.

Let us now turn to the difference in the melting rate in

the capsules. At the beginning of the melting, both

capsules have the same form, and, therefore, the same

melting rate. During the melting, the contact surface of

the swelling capsule flattens, which leads to the higher

decrease of the pressure (Fig. 5) and to the higher de-

crease of the melting rate. Close to the end of the

melting, when xl ! 0, the contact-surface slope of the

Fig. 4. The pressure distribution along the axis x for the cyl-

inder (m ¼ 0) and sphere (m ¼ 1) in the middle of the melting,
which corresponds to s ¼ 0:5. Solid lines illustrate pressure
variation in the swelling capsule (dq ¼ 0:3), while the dashed
lines show the pressure when swelling is ignored (dq ¼ 0).

Fig. 5. The dynamics of the pressure at the bottom during the

melting vs the relative solid displacement, s, in the cylinder

(m ¼ 0) and sphere (m ¼ 1). Solid lines describes the process in
the swelling capsule (dq ¼ 0:3), while the dashed lines – in the
rigid one when non-swelling is ignored (dq ¼ 0).

Fig. 3. Variation of the normalised difference between the

melting rates of the swelling and non-swelling capsules, D_ss ¼
ðds=d�ssjdq¼0 � ds=d�ssjdq¼0:3Þ=ðds=d�ssjdq¼0 � ds=d�ssjdq¼0:3Þjmax, dur-

ing the melting vs the relative solid displacement, s. The solid

and dashed lines represent respectively melting within the cyl-

inder (m ¼ 0) and sphere (m ¼ 1).

Fig. 2. The rate of melting ds=d�ss with respect to the relative
solid displacement, s, for the cylinder (m ¼ 0) and the sphere
(m ¼ 1). Solid lines show the swelling capsule (dq ¼ 0:3), while
the dashed lines illustrate melting within non-swelling one

(dq ¼ 0).
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solids in both capsules tends to zero, which diminishes

the difference in their melting rate.

The change of the time of complete melting of the

solid, �ssm, is shown in Fig. 6. Because the model is linear,
it gives linear increase of the complete-melting time with

increasing dq. The calculations give the rate of this in-

crease as d�ssm=ddq ¼ 0:0697 for the cylinder and

d�ssm=ddq ¼ 0:047 for the sphere. The time of complete
melting increases faster for the cylinder than for the

sphere because the maximum elongation of the capsule

radius dmax for the same density difference is higher for
the cylinder than for the sphere.

The normalised elongation of the capsule radius

d=dmax is shown in Fig. 7. Generally, the rate of swelling
decreases with s, because the surface of contact melting

has maximum area at the beginning, which then de-

creases during the melting. The rate of the increase of

the capsule radius, equal to ð4=pÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
for the cylin-

der and ð3=2Þð1� s2Þ for the sphere, is higher for the
sphere during the beginning of the melting, when

s <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4=9p2

p
, and lower later. Because the volume of

the cylinder is proportional to a2, while that of the
sphere to a3, an initial decrease of the radius of the solid,

which describes the effect of melting there, leads to

higher relative decrease of the solid volume of the

sphere, than that of the cylinder. Therefore the rate of

swelling is initially higher for the sphere. To the end of

the melting, however, when s tends to 1, the relative area

of the contact surface is smaller of the sphere than for

the cylinder, which leads to the lower rate of swelling of

the sphere than that of the cylinder.

The main feature of the solution of the problem, is

that, even if the chosen normalised difference between

the solid and liquid densities, dq ¼ 0:3, is sufficiently
large, the effect on the melting rate is smaller because

the maximum elongation of the capsule radius, dmax ¼
dq=ðm þ 2Þ þOðd2qÞ, which actually describes the effect of
the swelling on the melting rate, is smaller than dq, and

the formula for the melting rate (41) also includes the

factor 1/4 at the first-order correction caused by the

exponent 1/4 in the formula (39) for the melting rate.

Therefore, even for the cylinder we have the first-order

correction to the melting rate to be of order dq=8, while
the second order correction describing the error of the

model will be about d2q=16. For the maximum value

dq ¼ 0:3 the latter is less than 1%.
From the expression for the melting rate (39) it can

be seen that the first-order correction to the melting with

regard to Stefan number can be derived from the model

linear in transversal temperature distribution by sub-

stitution Twð1� 7SteTw=20Þ for Tw. For Tw ¼ 1 and

Ste ¼ 0:1 the first-order correction term is less than 5%,
while the model error, being of order OðSte2Þ, is around
1%.

4. Conclusions

The analysis performed in this work led to a simpli-

fied model of contact melting process inside an elastic

capsule of circular form. Using linearisation with regard

to the Stefan number, a closed-form evolution equation

for the solid core motion within the capsule is found,

describing the influences of the melt convection and

capsule’s wall deformation during melting owing to the

difference between the solid and liquid densities.

Generally, the melting rate of spherical capsules is

higher than that of cylindrical ones due to the different

ratio of their surface area to the volumes: the ratio is 1.5

times higher for the sphere than for the cylinder. As can

be seen from the expression for the melting rate (39), the

accounting for the convective heat transfer to order of

OðSte2Þ leads to the ð1� 7SteTw=20Þ�3=4 -fold decrease of
the melting rate, which, for Ste � 0:1, Tw ¼ 1, makes
approximately a 5% correction. This decrease of the

melting rate due to the accounting for the convection

heat flow is caused by the presence of the cold liquid

generated by melting and driven by the convection

along the layer––the effect not taken into account by

Fig. 6. The time of complete melting of the solid, �ssm, vs the
density difference dq for the cylinder (solid line, m ¼ 0) and the
sphere (dashed line, m ¼ 1).

Fig. 7. The normalised elongation of the capsule radius d=dmax
during the melting in the cylinder (solid line, m ¼ 0) and the
sphere (dashed line, m ¼ 1) vs the relative solid displacement, s.
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considering the linear approximation for the tempera-

ture distribution across the layer.

As was shown by computations, the swelling of the

capsule leads to the lower rate of melting due to flat-

tening of the contact surface. This is because the flat-

tening redistributes the high pressure supporting the

solid over a larger area, thereby making the pressure

lower, which, in turn, increases the molten layer thick-

ness, and, consequently, decreases the heat transfer and

the whole melting rate.

Because the maximum elongation of the capsule ra-

dius due to swelling is larger for a cylinder than for a

sphere for the same density difference, which is again

caused by the difference between the ratio of the capsule

surface to its volume (it is smaller for the cylinder, thus

causing a larger elongation of the radius necessary to

comprise the additional volume), the slowing down of

the melting due to the swelling is larger for the cylinder

than for the sphere.

The error of this linearised model is estimated as

ðd2q=16Þ (due to swelling) and OðSte2Þ (due to the non-
linearity of the temperature distribution), which for the

normalised density difference, dq ¼ 0:3, and the Stefan
number, Ste ¼ 0:1, is estimated around 1%, which is
sufficient for engineering applications.

Considering the capsule’s shell dynamics yields re-

strictions on the shell dimensions or its material con-

stants guaranteeing its intactness and the circular form

of the capsule at any stage of melting. In particular, the

lower bound for the admissible shell thickness is derived;

its minimum admissible value is inversely proportional

to the tensile strength and the Young’s modulus. The

latter provides the perfect guidelines for the manufac-

turer concerning the right selection of capsule’s material

and its shell thickness in order to sustain circularity of

the capsule and to avoid ruptures in swelling.
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